Linear SLAM: Linearising the SLAM problems using submap joining
نویسندگان
چکیده
منابع مشابه
SLAM based Selective Submap Joining for the Victoria Park Dataset ⋆
One of the main drawbacks of current SLAM algorithms is that they do not result in consistent maps of large areas, mainly because the uncertainties increase with the scenario. In addition, as the map size grows the computational costs increase, making SLAM solutions unsuitable for on-line applications. The use of local maps has been demonstrated to be useful in these situations, reducing comput...
متن کاملPower-SLAM: a linear-complexity, anytime algorithm for SLAM
In this paper, we present an Extended Kalman Filter (EKF)-based estimator for simultaneous localization and mapping (SLAM) with processing requirements that are linear in the number of features in the map. The proposed algorithm, called the Power SLAM, is based on three key ideas. Firstly, by introducing the Global Map Postponement method, approximations necessary for ensuring linear computatio...
متن کاملRobocentric map joining: Improving the consistency of EKF-SLAM
In this paper1 we study the Extended Kalman Filter approach to simultaneous localization and mapping (EKF-SLAM), describing its known properties and limitations, and concentrate on the filter consistency issue. We show that linearization of the inherent nonlinearities of both the vehicle motion and the sensor models frequently drives the solution of the EKF-SLAM out of consistency, specially in...
متن کاملSLAM-Safe Planner: Preventing Monocular SLAM Failure using Reinforcement Learning
Automating Monocular SLAM is challenging as routine trajectory planning frameworks tend to fail primarily due to the inherent tendency of Monocular SLAM systems to break down or deviate largely from their actual trajectory and map states. The reasons for such breakages or large deviations in trajectory estimates are manyfold, ranging from degeneracies associated with planar scenes, with large c...
متن کاملAccurate Large-Scale Bearing-Only SLAM by Map Joining
This paper presents a bearing-only SLAM algorithm that generates accurate and consistent maps of large environments by joining a series of small local maps. The local maps are built by least squares optimization with a proper landmark initialization technique. The local maps are then combined to build global map using Iterated Sparse Local Submap Joining Filter (ISLSJF). The accuracy and consis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2019
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2018.10.037